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Abstract. Transportation and communication networks are ubiquitous in nature and society. Uncovering
the underlying topology as well as link weights, is fundamental to understanding traffic dynamics and
designing effective control strategies to facilitate transmission efficiency. We develop a general method for
reconstructing transportation networks from detectable traffic flux data using the aid of a compressed
sensing algorithm. Our approach enables full reconstruction of network topology and link weights for both
directed and undirected networks from relatively small amounts of data compared to the network size. The
limited data requirement and certain resistance to noise allows our method to achieve real-time network
reconstruction. We substantiate the effectiveness of our method through systematic numerical tests with
respect to several different network structures and transmission strategies. We expect our approach to be
widely applicable in a variety of transportation and communication systems.

1 Introduction

Transportation and communication networks are of
tremendous importance in modern society, ranging from
the Internet to public traffic networks. Since the develop-
ment of complex network theory [1–3] and the collection
of a variety of empirical data, much effort has been ded-
icated toward understanding traffic dynamics that take
place on large transportation networks [4]. Intensive stud-
ies have gained insight into the emergence of conges-
tion [5] and relative physical properties, such as phase
transition [6]. A large number of routing strategies, as
well as structural perturbations, have been presented to
prevent the occurrence of congestion and facilitate trans-
mission efficiency [7–9]. It has been realized that network
structure plays a prominent role in traffic dynamics. How-
ever, due to the evolution of networks to adapt to the in-
crease of traffic demand, most real network structures and
link weights continuously change, rendering difficulties in
extracting topology. In particular, directly probing links
among nodes is infeasible with respect to some networks in
the absence of physical connections, such as wireless net-
works. In this regard, uncovering network structure as an
inverse problem from observable data remains outstand-
ing, especially when a small amount of data is available
and real-time network inference is necessary.

Solving the problem of network reconstruction based
on a detectable time series is of significant interest and
wide application, including inferring gene-regulatory net-
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works from gene expression data [10–13], revealing inter-
actions among neurons [14–17] and uncovering social re-
lationships from an individual’s behavior for the sake of
security. Despite existent methods on network reconstruc-
tion, an approach applicable to transportation and com-
munication networks is still lacking. The question related
to the inverse problem is this: is it possible to decode the
network topology from the recorded traffic flux passing
through the port of nodes? This question will become ex-
tremely challenging if real-time reconstruction is required
based on a small amount of traffic data. Previously pro-
posed methods, which rely on long and continuous time
series are no longer valid. To address this issue, an effi-
cient method toward achieving real-time reconstruction is
presented.

In this paper, we develop an efficient, data-driven,
compressed sensing based approach to infer traffic net-
works using the data of traffic flux. Compressed sensing
theory [18–23], which is subject to convex optimization,
was recently developed with the goal of reconstructing
sparse signal from rare measurements. The optimization
method has been deemed to have wide application in a va-
riety of fields with respect to its sparse data requirement
together with high reconstruction accuracy. Although,
compressed sensing has been used to uncover the networks
of interacting dynamics [24–27], the traffic network sys-
tem remains intact. We propose a general framework to
convert the problem of uncovering traffic networks into
the sparse-signal reconstruction, which enables the use of
compressed sensing theory. Specifically, we assume to be
able to record the incoming and outgoing flux at the port
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of each node at different times. We will demonstrate that
the network structure of transportation networks can be
efficiently and precisely inferred based on a relatively small
amount of traffic flux data compared to the network size.
We substantiate our method by taking three transmission
models into account: broadcast model [7], local routing
strategy model [8] and global routing strategy model [9].

2 Methods

2.1 Packets transmission model

Broadcast model (BM) is often used for modeling the
broadcast procedure in communication networks, such as
the Internet and wireless networks [7]. In this model, each
node broadcasts the copies of information stored in its
queue to all its neighbors.

Local routing model (LRM). Packets are routed based
only on local topological information with a single tunable
parameter α. When delivering packets, each node will do
a local search among its neighbors and deliver the packet
directly to its target if its destination is found within the
searched area. Otherwise, the packet will be delivered to
a node i, one of the neighbors of the searching node, ac-
cording to the preferential probability:

Θji =
kα

i∑
l∈Γj

kα
l

, (1)

where Γj is the neighbor set of j, ki is the degree of node
i and α is an adjustable parameter. When α is above 0,
large degree nodes are preferred; below 0, small degree
nodes are preferred. Θji represents the probability that
one data packet is delivered from node j to node i if i is
not its destination.

Global routing model (GRM). Each packet is navigated
according to the weighted shortest path between its source
and destination. The weight of the link between node i and
node j is wij = (kikj)λ, where ki refers to the degree of
node i and λ is an adjustable parameter that represents
the routing strategy. By recording all the shortest paths
between each pair of nodes, we can obtain a fixed rout-
ing table for the traffic system. There may be more than
one shortest path between two nodes; in this case, one
of the paths will be randomly chosen. All packets follow
the fixed routing table during the transmission simulation
processes.

The data of traffic flux are acquired from simulations
of the three traffic models. In each model, data packets
are randomly generated with randomly chosen sources and
destinations at each time step. For a given node, all pack-
ets will be delivered to its neighbors, according to the
routing strategy at one step in the absence of congestion
and transmission delay. There are two types of flow, the in-
coming flow and the outgoing flow at each node, which can
be measured by detecting the port of nodes (e.g., routers
and hubs). Due to the preference of packets delivered in
the GRM, only the flow of recently generated packets are
recorded.

2.2 Compressed sensing theory

The general problem that compressed sensing theory ad-
dressed can be described as reconstructing a sparse vector
X ∈ RN from linear measurements Y associated with X
in the form

Y = Φ ·X, (2)

where Y ∈ RM and Φ is an M × N matrix. The strik-
ing property of compressed sensing is that, if Φ satisfies
the restricted isometry property [18–23], the number of
required data to reconstruct X can be much less than the
length of signal vector X, i.e., M � N . Accurate recon-
struction can be realized by means of solving the following
optimization problem [18–23]:

min ||X||1 s.t. Y = Φ ·X, (3)

where min ||X||1 =
∑N

i=1 |Xi| is the L1 norm of vector X.
Solutions of the convex optimization problem have been
worked out in recent years [18–23].

2.3 Reconstruction framework

Establishing the relation between the reconstructing prob-
lem and equation (2) can be achieved by considering the
flux conservation between incoming and outgoing flows.
For an arbitrary node i, the incoming flux F in

i (t) from
other nodes at time t is

F in
i (t) =

N∑

j=1,j �=i

F out
j (t)Xi,j(t), (4)

where F out
j (t) is the outgoing flux of j and Xi,j(t) rep-

resents the proportion of flux from node j to node i in
F out

j (t) at time t.
Due to the characteristic difference between the local

routing model and the global routing model, the expres-
sion of Xi,j(t) varies a little; thus we treat them separately.
For the LRM, the proportion Xi,j(t) of an arbitrary node
i from node j at time t is

Xi,j(t) =
kα

i∑
p∈Γj

kα
p

aij , (5)

where aij stands for the elements of the adjacency matrix
(aij = 1 if i connects to j and aij = 0 otherwise). For a
given network topology and parameter α, the proportion
Xi,j(t) is time-invariant. By substituting equations (5)
and (4) can be rewritten as:

F in
i (t) =

N∑

j=1,j �=i

F out
j (t)

kα
i∑

p∈Γj
kα

p

aij . (6)

If measurements at different times t = t1, t2, . . . , tm are
available, equation (6) can be written in the matrix form
Ym×1

i = Φ
m×(N−1)
i · X(N−1)×1

i , where

Yi =
[
F in

i (t1), F in
i (t2), . . . , F in

i (tm)
]T
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is the incoming flux vector of i,

Φi =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

F out
1 (t1) . . . F out

i−1(t1) F out
i+1(t1) . . . F out

N (t1)

F out
1 (t2) . . . F out

i−1(t2) F out
i+1(t2) . . . F out

N (t2)

...
...

...
...

...
...

F out
1 (tm) . . . F out

i−1(tm) F out
i+1(tm) . . . F out

N (tm)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(7)
is the outgoing flux matrix and

Xi =

[
kα

i∑
p∈Γ1

kα
p

ai1,
kα

i∑
p∈Γ2

kα
p

ai2, . . . ,
kα

i∑
p∈ΓN

kα
p

aiN

]T

.

The vector Yi and the matrix Φi can be constructed im-
mediately from the detectable traffic flux, and the vector
Xi to be reconstructed is sparse, rendering applicable the
compressed sensing method. As a result, we can exactly
reconstruct all neighbors of node i from relatively small
amounts of measurements. In a similar way, the neighbor-
ing vectors of all nodes can be uncovered and the whole
network structure can be obtained by matching the neigh-
boring sets of all nodes.

As for the broadcast model, at each step, each node
broadcasts the exact copies of the packets stored in its
queue to its neighbors. Thus, we can treat it as a special
case of the local routing model in which α is 0, that is,
Xi,j = 1

kj
.

Meanwhile, for the global routing model, all packets
are transferred according to a routing table. Therefore,
once the routing table is determined, the path of a ran-
domly generated packet to its destination is fixed. For a
certain number of packets generated at node i with ran-
dom destinations, the ratio of data transferred from i
to one of its neighbors, e.g. j, denoted as Πij , is time-
invariant. Thus, similar to the local routing model, we
have the same matrix Φ and vector Yi, and the vector Xi

becomes

Xi =[Π1iai1, . . . , Πi−1,iai,i−1, Πi+1,iai,i+1, . . . , ΠNiaiN ]T.

3 Results

3.1 Reconstructing networks

To quantify the validity and efficiency of our compressed
sensing based framework for inferring transportation net-
works in terms of the number of measurements, we study
the success rate of existent links (SREL) and null connec-
tions (SRNC), which correspond to non-zero and zero ele-
ment values in the adjacency matrix, for homogeneous and
heterogeneous network structures, including random [28],
small-world [29] and scale-free [30]. Because the recon-
struction method is implemented for each node in the
network, we define SREL and SRNC on the basis of each
individual node, and the two success rates for the entire
network are the respective averaged values over all nodes.
The length of a time series is represented by the number of
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Fig. 1. (a) Reconstructed values of elements in X for LRM on
ER random network at data = 0.4. (b) Histogram of the recon-
structed values of Xi for Node 19 shown in (a). The number
of nodes is N = 100 and the average node degree is 〈k〉 = 8.

recorded flux data during the traffic dynamics normalized
by the network size N (data ≡ M/N). As shown in Fig-
ure 1a, at data = 0.4, there is a vast gap between the re-
constructed Xi,j corresponding to the existent links (green
points in Fig. 1a) and null connections (yellow points in
Fig. 1a) of all nodes, enabling us to correctly identify all
links by simply setting a threshold within the gap. All
the reconstructed values that are larger than the thresh-
old correspond to links; otherwise, Xi,j ’s are deemed null
connections. Obviously, the success rate of this method de-
pends on how we choose an appropriate threshold. Here,
we first draw a histogram distribution of elements in the
reconstructed vector Xi (e.g., Fig. 1b), and then select as
the threshold the location at which the vertical value of
the distribution becomes zero for the first time from the
right side of the highest peak.

The success rates of reconstructions for three types of
traffic models and three types of network structures are
shown in Figure 2. For all studied combinations of dy-
namics and networks, full reconstruction can be achieved
with quite low amounts of data. For instance, for ran-
dom and small-world networks, a 100% success rate can
be achieved insofar as the data amount exceeds a critical
value between 0.3 and 0.4. This critical value is approxi-
mately 0.5 for scale-free networks, slightly larger than for
the homogeneous networks. This can be attributed to the
presence of hubs, the connections of which are relatively
much denser than other nodes. In general, we found that
a lower amount of data is required when the reconstructed
vector is sparser. Therefore, heterogeneous networks usu-
ally need more data to handle hubs to accomplish com-
plete reconstruction, compared to homogeneous networks.

In real systems, noise or error in the data record is
inevitable. Regarding this, we test the robustness of our
method against additive noise involved in the measure-
ments of traffic flux. Particularly, white Gaussian noise
is added to the time series of the recorded traffic flux. To
measure the power of the noise, we introduce the signal-to-
noise ratio (SNR), a measure used to compare the degree
of a desired signal to the degree of background noise [31].
The expression of SNR is defined in a logarithmic decibel
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Fig. 2. Success rates of inferring three types of networks: scale-free, random and small-world for LRM, BM and GRM dynamics.
The network size N is 100 and the average degree 〈k〉 is 8. Each data point is obtained by averaging over 10 independent
realizations. For each realization, measurements are randomly picked from a time series of incoming and outgoing flux. We set
α = 1 for LRM and λ = 0 for GRM, respectively.

scale as,

SNRdB = 10log10

(
Psignal

Pnoise

)

, (8)

where Psignal refers to the average power of the signal and
Pnoise is the average power of the noise. This means that
the smaller the value of SNR is, the larger the ratio of the
noise is. In our application, the measured flow data are
considered as the signal, then the different intensities of
noise are added. The reconstruction performance against
different SNRs is shown in Figure 3. We can see from the
figure that the success rate can rise to nearly 1 when the
power of the signal exceeds a critical value between 40 dB
and 50 dB.

3.2 Inferring routing parameters

Having successfully reconstructed the network structure,
we can estimate the routing parameters of the local and
global routing models. Here, we offer an effective method
to infer the routing parameters solely on the recorded traf-
fic flux. In particular, after all links have been successfully
estimated, α and λ can be deduced from the relations be-
tween node degrees and traffic flux.

3.3 Inferring local routing parameter α

The relation between the incoming flux of node i and ki

is given by the mean field approximation [32]:

F in
i ∼ kα+1

i . (9)

Therefore, by fitting the relation between F in
i and ki in

the log-log form, we can estimate the parameter α.
Figure 4 shows the linear relations between node de-

grees and incoming flux in a log-log scale under different
values of the local routing parameter α, which can be ex-
plained via mean field approximation [32]. The parame-
ters α of the local routing model on different networks are
in quite good agreement with the true values with small
prediction errors, as shown in Figure 5. For random and
small-world networks, most of the boxes are on the line;
only when the absolute value of α is large do some boxes
slightly deviate from the line. This is because, for large α,
the mean field approximation works does not work as well
as when α is small, especially in scale-free networks.

3.4 Inferring global routing parameter λ

Unlike the simple relation between α and the slopes of fit-
ting curves in the local routing model, the global routing
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Fig. 3. Noise immunity of reconstructing three types of networks for LRM (a)–(c) and GRM (d)–(f). The average node degree
is 〈k〉 = 8 and the routing parameters are α = 1 for LRM and λ = 0 for GRM.
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model presents a more complex relation between the val-
ues of the routing parameter λ and the slopes of the fitting
lines.

To estimate the value of parameter λ used in the simu-
lations, we test a certain range of λ and obtain the slope of
the corresponding fitting line between the traffic flux and
node degree in log-log coordinates. Then, we draw the in-
terpolation fitting curve of the node degree and traffic flux
as the baseline shown in Figure 6. After fully reconstruct-
ing the network structure, we can use the estimated node
degree and the observed incoming flux of each node to
draw a fitting curve in log-log coordinates; thus, we can
obtain the slope of the fitting curve, which correspond to

the vertical axis value in Figure 6, and then the predicted
global routing parameter.

The box plots in Figure 7 show the accuracy of our
method. Each box contains 50 independent simulations
for the corresponding parameter and the line that gets
through is λ̂ = λ. The results are relatively accurate for
random and small-world networks, as most of the boxes
are on the line. For a scale-free network, the result is not
so ideal for large values of parameter λ when considering
the failure of the mean field approximation. Therefore, the
routing strategy parameters of heterogeneous networks are
usually hard to determine, compared to homogeneous net-
works when the link weight parameter becomes large.
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Fig. 5. Box plots for predicted LRM parameter on three types of networks, each box contains 20 independent simulations. The
horizontal axis is the true parameter α used in simulations and the vertical axis is the estimated α̂. The blue line is α̂ = α.
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Fig. 6. Baseline for estimating the routing parameter though
the predicted result. This is one realization of a random net-
work with N = 100 and 〈k〉 = 8; the red spots are from the
tested λ in interval [−1.5, 1.5], the black line is the interpola-
tion curve, the blue spots are the fitting slopes of uncovered
node degrees and the corresponding traffic flux, and the green
squares are the corresponding values of the predicted results,
whose horizontal axis values are the uncovered parameter λ.

So far, we have successfully inferred the network struc-
ture and the routing strategy parameters from the mea-
sured flux data; this enables us to not only find the adja-
cency connections of nodes, but also the routing strategy.
It is of great significance that this method enables us to
deep mine the information of a network and its dynamics
process.

4 Discussion

In this study, we developed a general approach to un-
cover transportation and communication networks from
a relatively small amount of traffic flux data. The key of

our method lies in casting the inverse problem into the
problem of sparse-signal reconstruction, which can be ad-
dressed with the aid of compressed sensing theory. Due to
the property of compressed sensing, our method possesses
the advantages of sparse data requirement and high in-
ferring accuracy, which benefits the real-time inference of
traffic networks. Our method is validated by considering
different types of network structure and three transmis-
sion models. Our approach is a necessary stepping stone
towards efficiently inferring various real traffic networks
based on observable traffic flux data. Because of the im-
portance and ubiquity of modern traffic networks, our
method is of great significance and may have potential
applications in a variety of systems.

It is noteworthy that to ensure sparse data requirement
by using the compressed sensing, matrix Φ should satisfy
the restricted isometry property (RIP) [19]. However, for
an arbitrary matrix, the test of RIP is an NP-hard prob-
lem [33], rendering the test computational prohibitive. At
present, only a few types of matrices have been proved
to have RIP, e.g., Gaussian random matrix, and the RIP
test of our compressed-sensing based reconstruction re-
mains elusive. Nevertheless, our method is still quite suc-
cessful, which lies in the presence of sufficient randomness
in matrix Φ. In general, in a complex networked system,
such as in the traffic network, nonlinear properties and
noise give rise to random fluctuations in the time series
of flux. Moreover, because that matrix Φ is constructed
from the time series, Φ is sufficiently random. In anal-
ogy with the Gaussian random matrix, the randomness in
Φ accounts for the requirement of small amounts of data.
Thus, though the RIP is hard to be rigorously ensured, our
approach still has practical significance for reconstructing
real networked systems in an extremely sufficient and ac-
curate manner.
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dation of China under Grant Nos. 11105011 and 61374175, the
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the Central Universities.

All authors contributed equally to the paper.

http://www.epj.org


Eur. Phys. J. B (2015) 88: 211 Page 7 of 7

−0.5 0.0 0.5

λ

−0.5

0.0

0.5

ˆ λ

Scale free

−1.0 −0.5 0.0 0.5 1.0

λ

−1.0

−0.5

0.0

0.5

1.0

Random

−1.0 −0.5 0.0 0.5 1.0

λ

−1.0

−0.5

0.0

0.5

1.0

Small world

Fig. 7. Box plots for the predicted GRM parameters of three types of networks; each box contains 20 pieces of simulation data.
The horizontal axis is the true parameter λ used in simulations and the vertical axis is the estimated λ̂. The blue line is λ̂ = λ.

References

1. A.-L. Barabási, Nat. Phys. 1, 68 (2005)
2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U.

Hwang, Phys. Rep. 424, 175 (2006)
3. M. Newman, Networks: An Introduction (Oxford

University Press, 2010)
4. D. Li, B. Fu, Y. Wang, G. Lu, Y. Berezin, H.E. Stanley,

S. Havlin, Proc. Natl. Acad. Sci. USA 112, 669 (2014)
5. W.-X. Wang, Z.-X. Wu, R. Jiang, G. Chen, Y.-C. Lai,

Chaos 19, 033106 (2009)
6. B.-H. Wang, W.-X. Wang, Pramana 71, 353 (2008)
7. D. Li, X. Jia, H. Liu, IEEE Trans. Mobile Computing 3,

144 (2004)
8. W.-X. Wang, B.-H. Wang, C.-Y. Yin, Y.-B. Xie, T. Zhou,

Phys. Rev. E 73, 026111 (2006)
9. G. Yan et al., Phys. Rev. E 73, 046108 (2006)

10. T.S. Gardner, D. di Bernardo, D. Lorenz, J.J. Collins,
Science 301, 102 (2003)

11. M. Bansal, V. Belcastro, A. Ambesi-Impiombato, D. di
Bernardo, Mol. Syst. Biol. 3, 78 (2007)

12. F. Geier, J. Timmer, C. Fleck, BMC Syst. Biol. 1, 11
(2007)

13. M. Hecker, S. Lambeck, S. Toepferb, E. van Someren, R.
Guthke, BioSystems 96, 86 (2009)

14. S. Grün, M. Diesmann, A. Aertsen, Neural Comput. 14,
43 (2002)

15. R. Gütig, A. Aertsen, S. Rotter, Neural Comput. 14, 121
(2002)

16. G. Pipa, S. Grün, Neurocomputing 52-54, 31 (2003)
17. K. Supekar, V. Menon, D. Rubin, M. Musen, M.D.

Greicius, PLoS Comput. Biol. 4, e1000100 (2008)
18. E.J. Candès, J. Romberg, T. Tao, IEEE Trans. Inf. Theor.

52, 489 (2006)
19. E.J. Candès, J.K. Romberg, T. Tao, Commun. Pure Appl.

Math. 59, 1207 (2006)
20. D.L. Donoho, IEEE Trans. Inf. Theor. 52, 1289 (2006)
21. R.G. Baraniuk, IEEE Sig. Proc. Mag. 24, 118 (2007)
22. E.J. Candès, M.B. Wakin, IEEE Sig. Proc. Mag. 25, 21

(2008)
23. J. Romberg, IEEE Sig. Proc. Mag. 25, 14 (2008)
24. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, C. Grebogi,

Phys. Rev. Lett. 106, 154101 (2011)
25. W.-X. Wang, Y.-C. Lai, C. Grebogi, J. Ye, Phys. Rev. X.

1, 021021 (2011)
26. Z. Shen, W.-X. Wang, Y. Fan, Z. Di, Y.-C. Lai, Nat.

Commun. 5, 1 (2014)
27. X. Han, Z. Shen, W.-X. Wang, Z. Di, Phys. Rev. Lett.

114, 208701 (2015)
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